Parametric approximation of airfoil aerodynamic coefficients at high angles of attack

Witold Skrzypiński
DTU Wind Energy
wiak@dtu.dk

Frederik Zahle
DTU Wind Energy
fzra@dtu.dk

Christian Bak
DTU Wind Energy
chba@dtu.dk

Abstract
Three methods for estimating the Cl and Cd curves at high AOAs were analyzed in this work. A method utilizing even sine and cosine functions was further developed. It was determined that between 160° and -160°AOA, the aerodynamic coefficients could be obtained with computationally expensive steady 2D CFD. In this work, reference aerodynamic coefficients were used directly at these AOAs. Reference aerodynamic coefficients were also directly used at AOAs between -30° and 30° as in this region the data is typically either available or may be obtained with computationally inexpensive 2D CFD. At other AOAs, the present approximation method produced Cl, Cd, and Cm curves satisfactorily close to the reference.

Introduction

Authors dealing with wind turbine blade stability at standstill conditions [1,2,3] indicate that the aerodynamic damping of blades at high AOAs is dependent on their aerodynamic characteristics. Often, those characteristics are assumed to be of a flat plate. According to [1,2], a more accurate representation of airfoil characteristics at high AOAs may be necessary to tackle the problem of aerodynamic stability at standstill conditions. This work presents an attempt to approximate airfoil aerodynamic coefficients at high AOAs.

Methods

Three methods for approximating aerodynamic coefficients at high AOAs (incl. flat plate) [4,5] were verified against the 360° wind tunnel measurements of the DU96-W-180 airfoil [6,7]. The best method [4] was chosen and modified in order to produce a satisfactory approximation of airfoil aerodynamic coefficients in the whole AOA range with the lowest possible number of data points necessary to tune the model. Further, a method for the approximation of Cm similar to [4] was found. Additionally, a range of AOAs in the vicinity of 180° was found at which the aerodynamic coefficients may be obtained with computationally inexpensive steady 2D CFD. This was done by a comparison of the results obtained with 2D steady CFD [6,8,10] with the results obtained with unsteady 3D CFD [9,10]. Note that obtaining the aerodynamic characteristics in the AOA range approximately between -30° and 30° is easy as this data may be computed with 2D CFD or is typically available from wind tunnel measurements. Therefore, this AOA range is outside the scope of the present work. On the other hand, accurate prediction of airfoil aerodynamic characteristics at high AOAs by means of CFD or wind tunnel measurements proves difficult. CFD computations capable of resolving the physics of flows at high AOAs are 3D and computationally expensive. This increases the need for an engineering model capable of delivering reliable airfoil characteristics at high AOAs by using a relatively low number of reference data points obtained by 3D CFD or cautious wind tunnel measurements.

Results

In this work, it was shown that the aerodynamic characteristics in the vicinity of 180° AOAs may be computed with 2D CFD, because the flow in this AOA region is partly attached. Figure 1 presents a comparison of 2D steady CFD computations carried out between 150° and -150° AOAs with 3D unsteady DES CFD computations carried out at 163°, 169° and 180°AOA, on an extruded airfoil [11], at Re=126. The comparison was satisfactory, as the Cl and Cd values computed with 3D CFD were relatively close to the respective curves obtained by means of 2D CFD. Because of that, in the present work the reference measurement data was used directly not only between -30° and 30°AOA but also between 160° and -160°AOA. It is also recommended that those AOA regions are computed using 2D CFD when aerodynamic characteristics are approximated in the future using the present method.

Conclusions

Three methods for estimating the Cl and Cd curves at high AOAs were analyzed (incl. flat plate) [4,5]. The methods were validated using the aerodynamic coefficients of the DU96-W-180 airfoil [6,7]. The method [4] was further developed by using two independent harmonic approximations in the positive and negative AOA regions for the estimation of Cl and Cd. Original data was used directly in the AOA region between -30° and 30° as well as between 160° and -160°AOA. In order to use original data between 160° and -160° and thereby assume that in the future this AOA region would be computed with 2D CFD, a comparison of the results obtained with 2D and 3D CFD in the aforementioned AOA region was carried out. The method produced satisfactory results for the Cl, Cd and Cm curves in the whole AOA range by using five data points to tune the model on each side of the y axis. In case of a new approximation, three points at AOAs equal to 45°, 105° and 155° would need to be computed using 3D CFD while the points at 30° and 160° could be obtained using 2D CFD.

References

2. Skrzypiński, W.; Gaunaa, M.; Wind turbine blade vibration at standstill conditions – the effect of imposing lap on the aerodynamic response of an elastically mounted airfoil; submitted to Wind Energy; July 2011
5. Vibe, J. A.; Coriag, R.; Fixed pitch rotor performance of large Horizontal Axis Wind Turbines; Brook Park, Ohio: NASA Lewis Research Center; 1981
10. Sørensen, M.: General purpose flow solver applied to flow over hills. PhD Dissertation, Risø-R-827(DN), Risø National Laboratory, Roskilde, Denmark, 1995

Figure 1: Comparison of 2D steady CFD computations carried out between 150° and -150° AOAs with 3D unsteady DES CFD computations carried out at 163°, 169° and 180°AOA.

The equations from [4] were chosen for further investigation, with the even sine approximation for Cl, and even cosine approximation for Cd. The most effective approach to capture the different maxima in the positive and negative AOA regions of both Cl and Cd curves was to find independent approximations for the curves in both regions, and blend them with the characteristics used directly in the AOA regions between -30° and 30° as well as between 160° and -160°.