It is becoming increasingly common for wind farm owners to extend existing wind farms. Given the known challenges associated with modelling the energy production of a wind farm [1], it is vital to understand the performance of models across sites in as much detail as possible. Production data offer an unrivalled opportunity to develop such an understanding.

Objectives

- A robust forecast of long-term energy production for the extension turbines, with minimised uncertainty
- Improved understanding of wind flow model performance
- A detailed understanding of historical performance and availability issues at the existing wind farm

Methods

- GL Garrad Hassan has developed a method that incorporates operational data into extension energy production forecasts
- Commercially deployed at more than 140MW of extension turbines spread over 18 sites
- Illustrated here using a hypothetical, but realistic, site

Results

- A detailed analysis of performance, availability and windiness is undertaken using established methods [2,3].
- Additional losses are accounted for to obtain a ‘validation production based estimate’ (vPBE)
- Industry standard techniques [4] used to define a modelled forecast, or ‘wind speed based estimate’ (WSBE)

This figure shows a map of residual discrepancies between the WSBE and vPBE. This provides valuable information on the performance of the model and permits informed adjustments to the predictions at the extension turbines

Uncertainty analysis

- Long-term windiness correction and future variability remain dominant
- With good quality input data, uncertainties in SCADA analysis are usually small.
- Modelling uncertainties significantly reduced via validation
- Typical P90/P50 ratios achieved in commercial deployment:
 - Conventional models: 75% - 85%
 - Validation method: 88% - 92%

Conclusions

- Validation of model performance against operational data yields significant reductions in the uncertainties of production forecasts for extension turbines.
- Better understanding of site specific model performance is achieved
- Operational data analysis provides the owner with valuable additional information on existing turbines
- The method presented is applicable to both project extensions and repowering.

References